\(\int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx\) [777]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 93 \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\cot (c+d x)}{a d}-\frac {\sec (c+d x)}{a d}-\frac {\sec ^3(c+d x)}{3 a d}+\frac {2 \tan (c+d x)}{a d}+\frac {\tan ^3(c+d x)}{3 a d} \]

[Out]

arctanh(cos(d*x+c))/a/d-cot(d*x+c)/a/d-sec(d*x+c)/a/d-1/3*sec(d*x+c)^3/a/d+2*tan(d*x+c)/a/d+1/3*tan(d*x+c)^3/a
/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2918, 2700, 276, 2702, 308, 213} \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {\tan ^3(c+d x)}{3 a d}+\frac {2 \tan (c+d x)}{a d}-\frac {\cot (c+d x)}{a d}-\frac {\sec ^3(c+d x)}{3 a d}-\frac {\sec (c+d x)}{a d} \]

[In]

Int[(Csc[c + d*x]^2*Sec[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

ArcTanh[Cos[c + d*x]]/(a*d) - Cot[c + d*x]/(a*d) - Sec[c + d*x]/(a*d) - Sec[c + d*x]^3/(3*a*d) + (2*Tan[c + d*
x])/(a*d) + Tan[c + d*x]^3/(3*a*d)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2700

Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(1 + x^2)^((
m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]

Rule 2702

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \csc (c+d x) \sec ^4(c+d x) \, dx}{a}+\frac {\int \csc ^2(c+d x) \sec ^4(c+d x) \, dx}{a} \\ & = -\frac {\text {Subst}\left (\int \frac {x^4}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d}+\frac {\text {Subst}\left (\int \frac {\left (1+x^2\right )^2}{x^2} \, dx,x,\tan (c+d x)\right )}{a d} \\ & = \frac {\text {Subst}\left (\int \left (2+\frac {1}{x^2}+x^2\right ) \, dx,x,\tan (c+d x)\right )}{a d}-\frac {\text {Subst}\left (\int \left (1+x^2+\frac {1}{-1+x^2}\right ) \, dx,x,\sec (c+d x)\right )}{a d} \\ & = -\frac {\cot (c+d x)}{a d}-\frac {\sec (c+d x)}{a d}-\frac {\sec ^3(c+d x)}{3 a d}+\frac {2 \tan (c+d x)}{a d}+\frac {\tan ^3(c+d x)}{3 a d}-\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d} \\ & = \frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\cot (c+d x)}{a d}-\frac {\sec (c+d x)}{a d}-\frac {\sec ^3(c+d x)}{3 a d}+\frac {2 \tan (c+d x)}{a d}+\frac {\tan ^3(c+d x)}{3 a d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(245\) vs. \(2(93)=186\).

Time = 0.86 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.63 \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\csc ^3(c+d x) \left (2+10 \cos (2 (c+d x))+8 \cos (3 (c+d x))+3 \cos (3 (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-3 \cos (3 (c+d x)) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\cos (c+d x) \left (-8-3 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+3 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+4 \sin (c+d x)-16 \sin (2 (c+d x))-6 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (2 (c+d x))+6 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (2 (c+d x))+8 \sin (3 (c+d x))\right )}{3 a d \left (\csc \left (\frac {1}{2} (c+d x)\right )-\sec \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc \left (\frac {1}{2} (c+d x)\right )+\sec \left (\frac {1}{2} (c+d x)\right )\right ) (1+\sin (c+d x))} \]

[In]

Integrate[(Csc[c + d*x]^2*Sec[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-1/3*(Csc[c + d*x]^3*(2 + 10*Cos[2*(c + d*x)] + 8*Cos[3*(c + d*x)] + 3*Cos[3*(c + d*x)]*Log[Cos[(c + d*x)/2]]
- 3*Cos[3*(c + d*x)]*Log[Sin[(c + d*x)/2]] + Cos[c + d*x]*(-8 - 3*Log[Cos[(c + d*x)/2]] + 3*Log[Sin[(c + d*x)/
2]]) + 4*Sin[c + d*x] - 16*Sin[2*(c + d*x)] - 6*Log[Cos[(c + d*x)/2]]*Sin[2*(c + d*x)] + 6*Log[Sin[(c + d*x)/2
]]*Sin[2*(c + d*x)] + 8*Sin[3*(c + d*x)]))/(a*d*(Csc[(c + d*x)/2] - Sec[(c + d*x)/2])*(Csc[(c + d*x)/2] + Sec[
(c + d*x)/2])*(1 + Sin[c + d*x]))

Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.12

method result size
derivativedivides \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {7}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}}{2 d a}\) \(104\)
default \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {7}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}}{2 d a}\) \(104\)
parallelrisch \(\frac {-6 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-39 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-36 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+28}{6 d a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}\) \(134\)
risch \(-\frac {2 \left (-2 \,{\mathrm e}^{3 i \left (d x +c \right )}+6 i {\mathrm e}^{4 i \left (d x +c \right )}-13 \,{\mathrm e}^{i \left (d x +c \right )}-8 i+2 i {\mathrm e}^{2 i \left (d x +c \right )}+3 \,{\mathrm e}^{5 i \left (d x +c \right )}\right )}{3 \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{3} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}\) \(150\)
norman \(\frac {\frac {1}{2 a d}-\frac {6 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}+\frac {14 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}-\frac {13 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {17 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(160\)

[In]

int(csc(d*x+c)^2*sec(d*x+c)^2/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/2/d/a*(tan(1/2*d*x+1/2*c)-1/(tan(1/2*d*x+1/2*c)-1)-1/tan(1/2*d*x+1/2*c)-2*ln(tan(1/2*d*x+1/2*c))-4/3/(tan(1/
2*d*x+1/2*c)+1)^3+2/(tan(1/2*d*x+1/2*c)+1)^2-7/(tan(1/2*d*x+1/2*c)+1))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.74 \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {10 \, \cos \left (d x + c\right )^{2} + 3 \, {\left (\cos \left (d x + c\right )^{3} - \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \cos \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (\cos \left (d x + c\right )^{3} - \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \cos \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, {\left (8 \, \cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - 4}{6 \, {\left (a d \cos \left (d x + c\right )^{3} - a d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate(csc(d*x+c)^2*sec(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(10*cos(d*x + c)^2 + 3*(cos(d*x + c)^3 - cos(d*x + c)*sin(d*x + c) - cos(d*x + c))*log(1/2*cos(d*x + c) +
1/2) - 3*(cos(d*x + c)^3 - cos(d*x + c)*sin(d*x + c) - cos(d*x + c))*log(-1/2*cos(d*x + c) + 1/2) + 2*(8*cos(d
*x + c)^2 - 1)*sin(d*x + c) - 4)/(a*d*cos(d*x + c)^3 - a*d*cos(d*x + c)*sin(d*x + c) - a*d*cos(d*x + c))

Sympy [F]

\[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\int \frac {\csc ^{2}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(csc(d*x+c)**2*sec(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(csc(c + d*x)**2*sec(c + d*x)**2/(sin(c + d*x) + 1), x)/a

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (89) = 178\).

Time = 0.20 (sec) , antiderivative size = 215, normalized size of antiderivative = 2.31 \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {\frac {22 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {8 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {30 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {27 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 3}{\frac {a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {2 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {a \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}} + \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {3 \, \sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}}{6 \, d} \]

[In]

integrate(csc(d*x+c)^2*sec(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/6*((22*sin(d*x + c)/(cos(d*x + c) + 1) + 8*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 30*sin(d*x + c)^3/(cos(d*x
 + c) + 1)^3 - 27*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 3)/(a*sin(d*x + c)/(cos(d*x + c) + 1) + 2*a*sin(d*x +
c)^2/(cos(d*x + c) + 1)^2 - 2*a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - a*sin(d*x + c)^5/(cos(d*x + c) + 1)^5) +
 6*log(sin(d*x + c)/(cos(d*x + c) + 1))/a - 3*sin(d*x + c)/(a*(cos(d*x + c) + 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.43 \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a} - \frac {3 \, {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} a} + \frac {21 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 36 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 19}{a {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(csc(d*x+c)^2*sec(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/6*(6*log(abs(tan(1/2*d*x + 1/2*c)))/a - 3*tan(1/2*d*x + 1/2*c)/a - 3*(tan(1/2*d*x + 1/2*c)^2 - 3*tan(1/2*d*
x + 1/2*c) + 1)/((tan(1/2*d*x + 1/2*c)^2 - tan(1/2*d*x + 1/2*c))*a) + (21*tan(1/2*d*x + 1/2*c)^2 + 36*tan(1/2*
d*x + 1/2*c) + 19)/(a*(tan(1/2*d*x + 1/2*c) + 1)^3))/d

Mupad [B] (verification not implemented)

Time = 10.46 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.61 \[ \int \frac {\csc ^2(c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a\,d}-\frac {-9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{3}+\frac {22\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+1}{d\,\left (-2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d} \]

[In]

int(1/(cos(c + d*x)^2*sin(c + d*x)^2*(a + a*sin(c + d*x))),x)

[Out]

tan(c/2 + (d*x)/2)/(2*a*d) - ((22*tan(c/2 + (d*x)/2))/3 + (8*tan(c/2 + (d*x)/2)^2)/3 - 10*tan(c/2 + (d*x)/2)^3
 - 9*tan(c/2 + (d*x)/2)^4 + 1)/(d*(2*a*tan(c/2 + (d*x)/2) + 4*a*tan(c/2 + (d*x)/2)^2 - 4*a*tan(c/2 + (d*x)/2)^
4 - 2*a*tan(c/2 + (d*x)/2)^5)) - log(tan(c/2 + (d*x)/2))/(a*d)